Distributed Stream Processing:
Substream Management and
Fault Tolerance

Artem Trofimov, ML infrastructure lead @ Nebius

What is this talk about?

1. Stream processing basics
2. Unbounded stream problems
3. Failure-recovery problems

4. How to choose the right failure-recovery model?

Stream processing applications

* Online-analytics
* Short-term personalization

* Online ML (training & inference)

Stream vs batch processing

» (Potentially) unbounded data
* (Potentially) unbounded computations

o Strong latency requirements”

*throughput is important as well

Stream processing model

Data source Data sink

. -‘ (] [] [

Streaming operations

e Stateless

o Stateful

N

out

N

state

out

state’

Logical execution graph

 Nodes are operations

e Vertices are connections between
operations

» User can define data partitioning
scheme before each operation

Physical execution graph

Example: text classification
Logical graph

Example: text classification
Physical graph

Difficulties

 Unbounded input - unbounded output

> How to prune state?

> When to release aggregation results?

 Computational nodes may fail

» How to recover state?

> How to ensure consistent results?

Part 1: unbounded stream problems

e |f we do HashdJdoin of two streams,
the state grows on each new
element

e At which moment we can release
the results?

https://www.reddit.com/r/itookapicture/comments/
/r9ngc/itap_of_two_streams_joining_together/

Substreams

* et p(x) be a predicate defined on
stream elements

* All elements satisfying p(x) form a
substream

 We are especially interested in
discovering substream end

 Multiple substreams can simultaneously
coexist

Windows: time-defined substreams

* \We can divide stream by timestamps
assigned to data elements

 Timestamps can be user or system
defined

https://www.oreilly.com/radar/the-world-beyond-batch-
streaming-101/

 For each window we can compute an
aggregation and release results

Window types

 Tumbling or fixed
o Sliding

e Session

https://www.oreilly.com/radar/the-world-beyond-batch-
streaming-101/

How to determine window/substream end?

Data source

(] — -’

Punctuations: delivering substream end signals to nodes

Punctuations properties

* Are easy to implement: no need to add
any special agents

* Do not support cyclic execution graphs

« Have O(K||PA2|]) network traffic
complexity, K - substreams number, P -
computational nodes number

* Can limit processing throughput

Akidau T. et al. Watermarks in Stream
Processing Systems: Semantics and
Comparative Analysis of Apache Flink
and Google Cloud Dataflow. VLDB 2021

What is the difference from micro-batching?

* In micro-batching the next stage does not start before all data from the
previous one Is processed

* |n punctuated stream all computations can be already done, we can just walit
for a substream end event to release output

Message 1 Message 2 Message 3 Message 4 Message 5

Micro Batch 1 Micro Batch 2

https://subscription.packtpub.com/book/big-data-and-
business-intelligence/9781787126497/9/ch09lvi1sec58/
understanding-micro-batching

Tracker: a novel approach to deliver substream end signal

Signals from data N Information about
. producers . in-flight elements
 Signals from data source are sent to > Tracking <
external tracking agent agent
\ _J
* This agent aggregates information NEOSS .
_ g Notifications are
about all in-flight data elements (=osd l ordered by t

* [racking agent determines when a @
substream ends and notifies all nodes

process |(=2) (=1

2 +

Trofimov, A., Sokolov, N., Marshalkin, N., Kuralenok, |., &
Novikov, B. (2022, June). Substream management in
distributed streaming dataflows. In Proceedings of the 16th
ACM International Conference on Distributed and Event-
Based Systems (pp. 55-66).

Tracker: implementation

agent

Tracking
 Each process sends to the tracking [}
agent reports about every data element send /recelveT T send \receive

h(x) 1 h(x)=1 h(x)=1 h(x) =1
X=12 X=12

 Each report is labeled by a random

number X that appears twice: on send
and on receive _ Q _, Q — Q —
* XOR operation for all numbers received ; . |

from such chain turns into O |

* [racking agent groups the reports by the

: : . Notified | Predicate | Segment | Segment XOR | XOR
predicates and sends termination events = 500

v h(x) - 500 000

* We call this approach a trAcker q(x) g o 110
framework A 000

v 2(x) - 500 000

Tracker: properties

* [raffic complexity is linear from
the nodes number - O(K||P||)

« XOR is a commutative operation,
SO we can do pre-aggregation on
nodes

* Cyclic graphs are supported

e |t is pretty easy to design
distributed implementation of the
tracking agent

Tracker: overhead on a stream processing engine

Centralized w/o local trAcker
Centralized w local trAcker
Distributed w/o local trAcker
Distributed w local trAcker
Punctuations

=

o
~

1

[
o
~

=
o

~
' |

=

o
[=)]

|

[

o
[¢)]
1

Traffic (number of messages)
)
(o)}

Traffic (hnumber of messages)
Traffic (number of messages)

15 10 100

Graph size Number of machines Tracking granularity

10 30 100

(a) Traffic by graph size (b) Traffic by number of VMs (c) Traffic by tracking frequency

Tracker: end-to-end experiments

n Tracking
h= % 2.5 .
g 0.3 - - —— Disabled
o ? Punctuations, granularity=1
N 9 2.0- —— Punctuations, granularity=10
(O
o - —— Punctuations, granularity=50
g 027 *— Acker S 1.5+ —— trAcker, granularity=1
e . 1
© Punctuations e
© i i
e g .
-g é | /
L ——o— 0 —0— —0— —0— —®
O'O i T T T T T O O 7

20 30 40 50 60 | ; ; : : 1

Nodes Input elements per millisecond

o

Part 2: fault tolerance and consistency problems

 Computational nodes may fall

 Users should NOT observe
fallures

https://severalnines.com/database-blog/clustered-database-node-failure-and-its-impact-high-availability

State recovery problem

* Elements processing order can be
non-deterministic

 Operations can be non-
commutative

* Our goal is to ensure that user does
not observe failures

Delivery guarantees

e At-most-once
e At-least-once

 Exactly-once

Delivery guarantees are actually about consistency

* Suppose that we have a model recovery mechanism that ensures recovery of
operations states all in-flight exactly as they were before the failure

| et B be a set of output elements released by a system with the model
recovery mechanism

At most once guarantees that output consists of a subset of B
* At least once guarantees that output consists of a superset of B

 Exactly once guarantees that output consists of exactly B

Two recovery models

e Model 1: internal network channels
are controlled

« Model 2: input and output channels
only are controlled

Model 1 by MillWheel example: state saving process

 Each element has a unique ID

 Node filters out an element if it
has been already processed

* |n a single transaction system
saves: Input element ID, new
state (or diff), output elements

 Node sends ACK for the input
element to the previous node

Akidau, T., Balikov, A., Bekiroglu, K., Chernyak, S., Haberman, J., Lax,
R., ... & Whittle, S. (2013). Millwheel: Fault-tolerant stream processing at
iInternet scale. Proceedings of the VLDB Endowment, 6(11), 1033-1044.

Model 1 by MillWheel example: state recovery

out

then repeated input will be

filtered out by the deduplicator A
v the dedup v |

>
N—
V\/
v

» Nodes re-send all output
elements without ACKs A :
3 N
+ If failed node has processed an L P2
element but did not send ACK,
(o]

-
—
N—

Model 1 properties

 Recovery does not require stop-the-world

* Overhead is spreaded among the operations:
there Is no overhead on stateless operations

* There Is a need for a very efficient
transactional storage for the state

 The main idea is to divide stream into epochs and
create a snapshot for each epoch

* Periodically special elements called “barriers” are
Injected into a stream

 When a barrier arrives to a node, the corresponding
input network channel is blocked

 When barriers arrive from all input channels, node
saves its state snapshot (a local snapshot) to an
external storage

« When all barriers arrive to data sinks, the set of all
local snapshots is labeled as a global snapshot

Model 2 by Flink example: state saving process

data stream
<4+ newer records older records ==

$ wn | | ' B

checkpoint checkpoint stream record
barrier n barrier n-1 (event)

part of part of part of
checkpoint n+1 checkpoint n checkpoint n-1

https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/concepts/stateful-stream-processing/

Carbone P. et al. Lightweight asynchronous
snapshots for distributed dataflows //arXiv preprint
arXiv:1506.08603. — 2015.

Model 2 by Flink example: state saving process phase 1

Exactly-once two-phase commit

Pre-commit without
external state

-

https://flink.apache.org/features/2018/03/01/end-to-end-
exactly-once-apache-flink.html

Snapshot offsets (2)

Inject checkpoint
barrier (1)

N

Pass checkpoint barrier (2)

Model 2 by Flink example: state saving process phase 2

Exactly-once two-phase commit

Notify checkpoint
completed (1)

Commit external
transaction (2)

P

https://flink.apache.org/features/2018/03/01/end-to-end-
exactly-once-apache-flink.html

Barrier alignment

Carbone P. et al. State management in Apache Flink®: consistent stateful distributed stream
processing //Proceedings of the VLDB Endowment. — 2017. — T. 10. — Ne. 12. — C. 1718-1729.

Model 2 by Flink example: state recovery

* Nodes load the last saved state

¢« Some amount of input elements
are reprocessed

Model 2 properties

* Recovery process requires stop-the-world

* |t is supposed that data source can re-send
some input elements

* Latency directly depends on the snapshotting
period for exactly-once

* At-least-once is efficient (but it has anomalies)

Model 2 properties: latency for exactly-once

Model 2 properties: at-least-once anomaly

e QOutput elements do not wait for
commit In at-least-once
guarantee

e |f graph has a non-commutative
operation, output elements can
be inconsistent

Model 2 modification: deterministic processing

* At-least-once anomaly Is caused by a
non-deterministic order of elements
processing

 |f we could ensure deterministic
processing, there will be no need to
wait for commit in exactly-once

* How can we make processing
deterministic?

How to ensure determinism?

Research Data Management Track Paper SIGMOD ’21, June 20-25, 2021, Virtual Event, China
e One way IS to |Og all non- Clonos: Consistent Causal Recovery for Highly-Available
d i _ t _t d i I Streaming Dataflows
e erm I n IS IC aC IOnS an O rep ay Pedro F. Silvestre Marios Fragkoulis Diomidis Spinellis Asterios Katsifodimos
Delft University of Technol
them (elements order, random [Sivestre M.Brgkouto s Syl A Yo il Gdeliak

generators, etc)

¢ If O perat | Oons are p U re, one Ccan StreamBox: Modern Stream Processing on a Multicore Machine
buffer input elements and sort them
" Hongyu Miao!, Heejin Park!, Myeongjae Jeon?,
W h en th e o0 rd er IS ensu red Gennady Pekhimenko?, Kathryn S. McKinley>, and Felix Xiaozhu Lin!

! Purdue ECE 2Microsoft Research 3Google

Optimistic approach to ensure determinism

* Suppose that all operations in graph are An optimistic approach to handle out-of-order
pure events within analytical stream processing

P Let US deflne a -to-tal Ol’d er On d ata Igor E. Kuralenok #!, Nikita Maﬁ:ﬁ;ﬂii{:ﬁg Trofimov #2, Boris Novikov #4
elemeﬂtS t(X) Saint Petersburg, Russia

1ikuralenok@gmail.com 2marnikitta@gmail.com 3trofimov9artem@gmail.com 4borisnov@acm.org

* |f elements are arrived properly ordered,
worker processes them as usual

e |f an element is out-of-order, worker
iInvalidates state and previous output
elements affected by this element and
re-computes new state and new output
elements

Part 3: How to choose guarantee?

Distributed Classification of Text Streams: Limitations,

* Bank transactions (maybe) require Challenges, and Solutions

Artem Trofimov Nikita Sokolov Mikhail Shavkunov

exaCt I y - O n C e Saint Petersburg State University / ITMO university National Research University Higher
JetBrains Research Saint Petersburg, Russia School of Economics
Saint Petersburg, Russia faucct@gmail.com Saint Petersburg, Russia
trofimov9artem@gmail.com mv.shavkunov@gmail.com
o F M L t g 't— I 't— Igor Kuralenok Boris Novikov
O r ra I n I n a e a’S O n C e I S Yandex National Research University Higher
. . . Saint Petersburg, Russia School of Economics
S u ﬁl C I e n t I n m a n y C aS eS solar@yandex-team.ru Saint Petersburg, Russia
borisnov@acm.org

 For ML inference the choice of a
guarantee highly depends on a
specific problem

How to choose guarantee? At least once: example 1

How to choose guarantee? At least once: example 2

Conclusion

e |t is hard to work with unbounded streams but we can divide them into substreams

 Punctuations is the standard technigue for substreams management but it is
inefficient in case of a large number of nodes or substreams

* [Tracker is more suitable for large substreams number but its implementation is more
complex

 EXxactly-once guarantee affects latency if stream processing system applies global
checkpointing model (e.qg., Flink)

* Exactly-once = at-least-once + deduplication, if a system is deterministic

* There are multiple ways to ensure determinism but they can affect throughput

