
Artem Trofimov, ML infrastructure lead @ Nebius

Distributed Stream Processing:
Substream Management and
Fault Tolerance

What is this talk about?

1. Stream processing basics

2. Unbounded stream problems

3. Failure-recovery problems

4. How to choose the right failure-recovery model?

Stream processing applications

• Online-analytics

• Short-term personalization

• Online ML (training & inference)

Stream vs batch processing

• (Potentially) unbounded data

• (Potentially) unbounded computations

• Strong latency requirements*

*throughput is important as well

Stream processing model

Data source

Система
обработки

Data sink

item item item item item item

Streaming operations

• Stateless

• Stateful

OP
in state out state’

OP
in out

Logical execution graph

Система
обработки

source op1 op2 op3 sink

• Nodes are operations

• Vertices are connections between
operations

• User can define data partitioning
scheme before each operation

Physical execution graph

Example: text classification
Logical graph

Example: text classification
Physical graph

Difficulties

• Unbounded input - unbounded output

‣ How to prune state?

‣ When to release aggregation results?

• Computational nodes may fail

‣ How to recover state?

‣ How to ensure consistent results?

Part 1: unbounded stream problems

• If we do HashJoin of two streams,
the state grows on each new
element

• At which moment we can release
the results?

https://www.reddit.com/r/itookapicture/comments/
7r9nqc/itap_of_two_streams_joining_together/

Substreams

• Let p(x) be a predicate defined on
stream elements

• All elements satisfying p(x) form a
substream

• We are especially interested in
discovering substream end

• Multiple substreams can simultaneously
coexist

Windows: time-defined substreams

• We can divide stream by timestamps
assigned to data elements

• Timestamps can be user or system
defined

• For each window we can compute an
aggregation and release results

https://www.oreilly.com/radar/the-world-beyond-batch-
streaming-101/

Window types

• Tumbling or fixed

• Sliding

• Session

https://www.oreilly.com/radar/the-world-beyond-batch-
streaming-101/

How to determine window/substream end?

Data source

Система
обработки

item item itemEOW

Punctuations: delivering substream end signals to nodes

p

p

p

p

Punctuations properties

• Are easy to implement: no need to add
any special agents

• Do not support cyclic execution graphs

• Have O(K||P^2||) network traffic
complexity, K - substreams number, P -
computational nodes number

• Can limit processing throughput

Akidau T. et al. Watermarks in Stream
Processing Systems: Semantics and
Comparative Analysis of Apache Flink
and Google Cloud Dataflow. VLDB 2021

What is the difference from micro-batching?

• In micro-batching the next stage does not start before all data from the
previous one is processed

• In punctuated stream all computations can be already done, we can just wait
for a substream end event to release output

https://subscription.packtpub.com/book/big-data-and-
business-intelligence/9781787126497/9/ch09lvl1sec58/
understanding-micro-batching

Tracker: a novel approach to deliver substream end signal

• Signals from data source are sent to
external tracking agent

• This agent aggregates information
about all in-flight data elements

• Tracking agent determines when a
substream ends and notifies all nodes

Trofimov, A., Sokolov, N., Marshalkin, N., Kuralenok, I., &
Novikov, B. (2022, June). Substream management in
distributed streaming dataflows. In Proceedings of the 16th
ACM International Conference on Distributed and Event-
Based Systems (pp. 55-66).

Tracker: implementation

• Each process sends to the tracking
agent reports about every data element

• Each report is labeled by a random
number X that appears twice: on send
and on receive

• XOR operation for all numbers received
from such chain turns into 0

• Tracking agent groups the reports by the
predicates and sends termination events

• We call this approach a trAcker
framework

Tracker: properties

• Traffic complexity is linear from
the nodes number - O(K||P||)

• XOR is a commutative operation,
so we can do pre-aggregation on
nodes

• Cyclic graphs are supported

• It is pretty easy to design
distributed implementation of the
tracking agent

Tracker: overhead on a stream processing engine

Tracker: end-to-end experiments

Part 2: fault tolerance and consistency problems

• Computational nodes may fail

• Users should NOT observe
failures

https://severalnines.com/database-blog/clustered-database-node-failure-and-its-impact-high-availability

State recovery problem

• Elements processing order can be
non-deterministic

• Operations can be non-
commutative

• Our goal is to ensure that user does
not observe failures

Delivery guarantees

• At-most-once

• At-least-once

• Exactly-once

Delivery guarantees are actually about consistency

• Suppose that we have a model recovery mechanism that ensures recovery of
operations states all in-flight exactly as they were before the failure

• Let B be a set of output elements released by a system with the model
recovery mechanism

• At most once guarantees that output consists of a subset of B

• At least once guarantees that output consists of a superset of B

• Exactly once guarantees that output consists of exactly B

Two recovery models

• Model 1: internal network channels
are controlled

• Model 2: input and output channels
only are controlled

Model 1 by MillWheel example: state saving process

• Each element has a unique ID

• Node filters out an element if it
has been already processed

• In a single transaction system
saves: input element ID, new
state (or diff), output elements

• Node sends ACK for the input
element to the previous node

op1 op2

in

1

ACK

out

state

in ID

2

3

out

4

ACK

5

Akidau, T., Balikov, A., Bekiroğlu, K., Chernyak, S., Haberman, J., Lax,
R., ... & Whittle, S. (2013). Millwheel: Fault-tolerant stream processing at
internet scale. Proceedings of the VLDB Endowment, 6(11), 1033-1044.

Model 1 by MillWheel example: state recovery

op1 op2

out

3

out

4

out

2
out

state
1

• Nodes re-send all output
elements without ACKs

• If failed node has processed an
element but did not send ACK,
then repeated input will be
filtered out by the deduplicator

Model 1 properties

• Recovery does not require stop-the-world

• Overhead is spreaded among the operations:
there is no overhead on stateless operations

• There is a need for a very efficient
transactional storage for the state

Model 2 by Flink example: state saving process

Carbone P. et al. Lightweight asynchronous
snapshots for distributed dataflows //arXiv preprint
arXiv:1506.08603. – 2015.

• The main idea is to divide stream into epochs and
create a snapshot for each epoch

• Periodically special elements called “barriers” are
injected into a stream

• When a barrier arrives to a node, the corresponding
input network channel is blocked

• When barriers arrive from all input channels, node
saves its state snapshot (a local snapshot) to an
external storage

• When all barriers arrive to data sinks, the set of all
local snapshots is labeled as a global snapshot

https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/concepts/stateful-stream-processing/

Model 2 by Flink example: state saving process phase 1

https://flink.apache.org/features/2018/03/01/end-to-end-
exactly-once-apache-flink.html

Model 2 by Flink example: state saving process phase 2

https://flink.apache.org/features/2018/03/01/end-to-end-
exactly-once-apache-flink.html

Barrier alignment

Carbone P. et al. State management in Apache Flink®: consistent stateful distributed stream
processing //Proceedings of the VLDB Endowment. – 2017. – Т. 10. – №. 12. – С. 1718-1729.

Model 2 by Flink example: state recovery

• Nodes load the last saved state

• Some amount of input elements
are reprocessed

Model 2 properties

• Recovery process requires stop-the-world

• It is supposed that data source can re-send
some input elements

• Latency directly depends on the snapshotting
period for exactly-once

• At-least-once is efficient (but it has anomalies)

Model 2 properties: latency for exactly-once

Model 2 properties: at-least-once anomaly

• Output elements do not wait for
commit in at-least-once
guarantee

• If graph has a non-commutative
operation, output elements can
be inconsistent

Model 2 modification: deterministic processing

• At-least-once anomaly is caused by a
non-deterministic order of elements
processing

• If we could ensure deterministic
processing, there will be no need to
wait for commit in exactly-once

• How can we make processing
deterministic?

How to ensure determinism?

• One way is to log all non-
deterministic actions and to replay
them (elements order, random
generators, etc)

• If operations are pure, one can
buffer input elements and sort them
when the order is ensured

Optimistic approach to ensure determinism

• Suppose that all operations in graph are
pure

• Let us define a total order on data
elements t(x)

• If elements are arrived properly ordered,
worker processes them as usual

• If an element is out-of-order, worker
invalidates state and previous output
elements affected by this element and
re-computes new state and new output
elements

Part 3: How to choose guarantee?

• Bank transactions (maybe) require
exactly-once

• For ML training at-least-once is
sufficient in many cases

• For ML inference the choice of a
guarantee highly depends on a
specific problem

How to choose guarantee? At least once: example 1

How to choose guarantee? At least once: example 2

Conclusion

• It is hard to work with unbounded streams but we can divide them into substreams

• Punctuations is the standard technique for substreams management but it is
inefficient in case of a large number of nodes or substreams

• Tracker is more suitable for large substreams number but its implementation is more
complex

• Exactly-once guarantee affects latency if stream processing system applies global
checkpointing model (e.g., Flink)

• Exactly-once = at-least-once + deduplication, if a system is deterministic

• There are multiple ways to ensure determinism but they can affect throughput

