Artem Trofimov, ML infrastructure lead @ Nebius

Distributed Stream Processing: Substream Management and Fault Tolerance

What is this talk about?

- 1. Stream processing basics
- 2. Unbounded stream problems
- 3. Failure-recovery problems
- 4. How to choose the right failure-recovery model?

Stream processing applications

- Online-analytics
- Short-term personalization
- Online ML (training & inference)

Stream vs batch processing

- (Potentially) unbounded data
- (Potentially) unbounded computations
- Strong latency requirements*

*throughput is important as well

Stream processing model

Streaming operations

- Stateless
- Stateful

Logical execution graph

- Nodes are operations
- Vertices are connections between operations
- User can define data partitioning scheme before each operation

Physical execution graph

Workers⁻

Example: text classification Logical graph

Example: text classification Physical graph

Difficulties

• Unbounded input - unbounded output

- ‣ How to prune state?
- ‣ When to release aggregation results?
- Computational nodes may fail
	- How to recover state?
	- ‣ How to ensure consistent results?

Part 1: unbounded stream problems

- If we do HashJoin of two streams, the state grows on each new element
- At which moment we can release the results?

https://www.reddit.com/r/itookapicture/comments/ 7r9nqc/itap_of_two_streams_joining_together/

Substreams

- Let p(x) be a predicate defined on stream elements
- All elements satisfying $p(x)$ form a substream
- We are especially interested in discovering substream end
- Multiple substreams can simultaneously coexist

Windows: time-defined substreams

- We can divide stream by timestamps assigned to data elements
- Timestamps can be user or system defined
- For each window we can compute an aggregation and release results

https://www.oreilly.com/radar/the-world-beyond-batchstreaming-101/

Window types

- Tumbling or fixed
- Sliding
- Session

https://www.oreilly.com/radar/the-world-beyond-batchstreaming-101/

How to determine window/substream end?

Punctuations: delivering substream end signals to nodes

Punctuations properties

- Are easy to implement: no need to add any special agents
- Do not support cyclic execution graphs
- Have O(K||P^2||) network traffic complexity, K - substreams number, P computational nodes number
- Can limit processing throughput

Comparative Analysis of Apache Flink and Google Cloud Dataflow. VLDB 2021

What is the difference from micro-batching?

- In micro-batching the next stage does not start before all data from the previous one is processed
- for a substream end event to release output

Micro Batch 1

https://subscription.packtpub.com/book/big-data-andbusiness-intelligence/9781787126497/9/ch09lvl1sec58/ understanding-micro-batching

• In punctuated stream all computations can be already done, we can just wait

Micro Batch 2

Tracker: a novel approach to deliver substream end signal

- Signals from data source are sent to external tracking agent
- This agent aggregates information about all in-flight data elements
- Tracking agent determines when a substream ends and notifies all nodes

Trofimov, A., Sokolov, N., Marshalkin, N., Kuralenok, I., & Novikov, B. (2022, June). Substream management in distributed streaming dataflows. In Proceedings of the 16th ACM International Conference on Distributed and Event-Based Systems (pp. 55-66).

Tracker: implementation

- Each process sends to the tracking agent reports about every data element
- Each report is labeled by a random number X that appears twice: on send and on receive
- XOR operation for all numbers received from such chain turns into 0
- Tracking agent groups the reports by the predicates and sends termination events
- We call this approach a trAcker framework

Tracker: properties

- Traffic complexity is linear from the nodes number - O(K||P||)
- XOR is a commutative operation, so we can do pre-aggregation on nodes
- Cyclic graphs are supported
- It is pretty easy to design distributed implementation of the tracking agent

Tracker: overhead on a stream processing engine

(a) Traffic by graph size

Traffic (number of messages)
a
a
a
a
a
a
a
a
a
a
a
 10 100 1 Tracking granularity

(b) Traffic by number of VMs

(c) Traffic by tracking frequency

Tracker: end-to-end experiments

Part 2: fault tolerance and consistency problems

- Computational nodes may fail
- Users should NOT observe failures

https://severalnines.com/database-blog/clustered-database-node-failure-and-its-impact-high-availability

State recovery problem

- Elements processing order can be non-deterministic
- Operations can be noncommutative
- Our goal is to ensure that user does not observe failures

Delivery guarantees

- At-most-once
- **• At-least-once**
- **• Exactly-once**

Delivery guarantees are actually about consistency

- Suppose that we have a model recovery mechanism that ensures recovery of operations states all in-flight exactly as they were before the failure
- Let B be a set of output elements released by a system with the model recovery mechanism
- **At most once** guarantees that output consists of a subset of B
- **At least once** guarantees that output consists of a superset of B
- **Exactly once** guarantees that output consists of exactly B

Two recovery models

- Model 1: internal network channels are controlled
- Model 2: input and output channels only are controlled

Workers

Model 1 by MillWheel example: state saving process

- Each element has a unique ID
- Node filters out an element if it has been already processed
- In a single transaction system saves: input element ID, new state (or diff), output elements
- Node sends ACK for the input element to the previous node

Akidau, T., Balikov, A., Bekiroğlu, K., Chernyak, S., Haberman, J., Lax, R., ... & Whittle, S. (2013). Millwheel: Fault-tolerant stream processing at internet scale. Proceedings of the VLDB Endowment, 6(11), 1033-1044.

Model 1 by MillWheel example: state recovery

- Nodes re-send all output elements without ACKs
- If failed node has processed an element but did not send ACK, then repeated input will be filtered out by the deduplicator

Model 1 properties

- Recovery does not require stop-the-world
- Overhead is spreaded among the operations: there is no overhead on stateless operations
- There is a need for a very efficient transactional storage for the state

Model 2 by Flink example: state saving process

Carbone P. et al. Lightweight asynchronous snapshots for distributed dataflows //arXiv preprint arXiv:1506.08603. – 2015.

- The main idea is to divide stream into epochs and create a snapshot for each epoch
- Periodically special elements called "barriers" are injected into a stream
- When a barrier arrives to a node, the corresponding input network channel is blocked
- When barriers arrive from all input channels, node saves its state snapshot (a local snapshot) to an external storage
- When all barriers arrive to data sinks, the set of all local snapshots is labeled as a global snapshot

https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/concepts/stateful-stream-processing/

Model 2 by Flink example: state saving process phase 1

Exactly-once two-phase commit

https://flink.apache.org/features/2018/03/01/end-to-endexactly-once-apache-flink.html

Model 2 by Flink example: state saving process phase 2

Exactly-once two-phase commit

https://flink.apache.org/features/2018/03/01/end-to-endexactly-once-apache-flink.html

Barrier alignment

Carbone P. et al. State management in Apache Flink®: consistent stateful distributed stream processing //Proceedings of the VLDB Endowment. – 2017. – Т. 10. – №. 12. – С. 1718-1729.

Model 2 by Flink example: state recovery

- Nodes load the last saved state
- Some amount of input elements are reprocessed
-
-
-
-
-
-
- -

Model 2 properties

- Recovery process requires stop-the-world
- It is supposed that data source can re-send some input elements
- Latency directly depends on the snapshotting period for exactly-once
- At-least-once is efficient (but it has anomalies)

Model 2 properties: latency for exactly-once

Model 2 properties: at-least-once anomaly

- Output elements do not wait for commit in at-least-once guarantee
- If graph has a non-commutative operation, output elements can be inconsistent

Model 2 modification: deterministic processing

- At-least-once anomaly is caused by a non-deterministic order of elements processing
- If we could ensure deterministic processing, there will be no need to wait for commit in exactly-once
- How can we make processing deterministic?

How to ensure determinism?

- One way is to log all nondeterministic actions and to replay them (elements order, random generators, etc)
- If operations are pure, one can buffer input elements and sort them when the order is ensured

Research Data Management Track Paper

SIGMOD '21, June 20–25, 2021, Virtual Event, China

Clonos: Consistent Causal Recovery for Highly-Available Streaming Dataflows

Pedro F. Silvestre

Marios Fragkoulis Diomidis Spinellis Asterios Katsifodimos Delft University of Technology {P.F.Silvestre, M.Fragkoulis, D.Spinellis, A.Katsifodimos}@tudelft.nl=

StreamBox: Modern Stream Processing on a Multicore Machine

Hongyu Miao¹, Heejin Park¹, Myeongjae Jeon², Gennady Pekhimenko², Kathryn S. McKinley³, and Felix Xiaozhu Lin¹ 1 Purdue ECE ²Microsoft Research 3600 gle

Optimistic approach to ensure determinism

- Suppose that all operations in graph are pure
- Let us define a total order on data elements t(x)
- If elements are arrived properly ordered, worker processes them as usual
- If an element is out-of-order, worker invalidates state and previous output elements affected by this element and re-computes new state and new output elements

An optimistic approach to handle out-of-order events within analytical stream processing

Igor E. Kuralenok $^{#1}$, Nikita Marshalkin $^{#2}$, Artem Trofimov $^{#3}$, Boris Novikov $^{#4}$

 $#$ JetBrains Research Saint Petersburg, Russia $^{-1}$ ikuralenok@gmail.com 2 marnikitta@gmail.com 3 trofimov9artem@gmail.com 4 borisnov@acm.org

Part 3: How to choose guarantee?

- Bank transactions (maybe) require exactly-once
- For ML training at-least-once is sufficient in many cases
- For ML inference the choice of a guarantee highly depends on a specific problem

Distributed Classification of Text Streams: Limitations, Challenges, and Solutions

Artem Trofimov Saint Petersburg State University / JetBrains Research Saint Petersburg, Russia trofimov9artem@gmail.com

Nikita Sokolov ITMO university Saint Petersburg, Russia faucct@gmail.com

Igor Kuralenok Yandex Saint Petersburg, Russia solar@yandex-team.ru

Mikhail Shavkunov National Research University Higher School of Economics Saint Petersburg, Russia mv.shavkunov@gmail.com

Boris Novikov National Research University Higher School of Economics Saint Petersburg, Russia borisnov@acm.org

How to choose guarantee? At least once: example 1

- 4000 articles (window) \sum
- Sport and science topics
- 2 Amazon EC2 small instances \sum

■ Sport ■ Science

How to choose guarantee? At least once: example 2

- 5000 articles (window) \sum
- Looking for "popular" topics \sum
- 2 Amazon EC2 small instances \sum

Conclusion

- It is hard to work with unbounded streams but we can divide them into substreams
- Punctuations is the standard technique for substreams management but it is inefficient in case of a large number of nodes or substreams
- Tracker is more suitable for large substreams number but its implementation is more complex
- Exactly-once guarantee affects latency if stream processing system applies global checkpointing model (e.g., Flink)
- Exactly-once = at-least-once + deduplication, if a system is deterministic
- There are multiple ways to ensure determinism but they can affect throughput