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What is this talk about?

1. Stream processing basics


2. Unbounded stream problems


3. Failure-recovery problems


4. How to choose the right failure-recovery model?



Stream processing applications

• Online-analytics


• Short-term personalization


• Online ML (training & inference)



Stream vs batch processing

• (Potentially) unbounded data


• (Potentially) unbounded computations


• Strong latency requirements*

*throughput is important as well



Stream processing model
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Streaming operations

• Stateless


• Stateful

OP
in state out state’

OP
in out



Logical execution graph

Система 
обработки

source op1 op2 op3 sink

• Nodes are operations


• Vertices are connections between 
operations


• User can define data partitioning 
scheme before each operation



Physical execution graph



Example: text classification
Logical graph



Example: text classification
Physical graph



Difficulties

• Unbounded input - unbounded output

‣ How to prune state?


‣ When to release aggregation results?


• Computational nodes may fail

‣ How to recover state?


‣ How to ensure consistent results?



Part 1: unbounded stream problems

• If we do HashJoin of two streams, 
the state grows on each new 
element


• At which moment we can release 
the results?

https://www.reddit.com/r/itookapicture/comments/
7r9nqc/itap_of_two_streams_joining_together/



Substreams

• Let p(x) be a predicate defined on 
stream elements


• All elements satisfying p(x) form a 
substream


• We are especially interested in 
discovering substream end


• Multiple substreams can simultaneously 
coexist



Windows: time-defined substreams

• We can divide stream by timestamps 
assigned to data elements


• Timestamps can be user or system 
defined


• For each window we can compute an 
aggregation and release results

https://www.oreilly.com/radar/the-world-beyond-batch-
streaming-101/



Window types

• Tumbling or fixed


• Sliding


• Session

https://www.oreilly.com/radar/the-world-beyond-batch-
streaming-101/



How to determine window/substream end?

Data source

Система 
обработки

item item itemEOW



Punctuations: delivering substream end signals to nodes
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Punctuations properties

• Are easy to implement: no need to add 
any special agents


• Do not support cyclic execution graphs


• Have O(K||P^2||) network traffic 
complexity, K - substreams number, P - 
computational nodes number


• Can limit processing throughput

Akidau T. et al. Watermarks in Stream 
Processing Systems: Semantics and 
Comparative Analysis of Apache Flink 
and Google Cloud Dataflow. VLDB 2021



What is the difference from micro-batching?

• In micro-batching the next stage does not start before all data from the 
previous one is processed


• In punctuated stream all computations can be already done, we can just wait 
for a substream end event to release output

https://subscription.packtpub.com/book/big-data-and-
business-intelligence/9781787126497/9/ch09lvl1sec58/
understanding-micro-batching



Tracker: a novel approach to deliver substream end signal

• Signals from data source are sent to 
external tracking agent


• This agent aggregates information 
about all in-flight data elements 


• Tracking agent determines when a 
substream ends and notifies all nodes

Trofimov, A., Sokolov, N., Marshalkin, N., Kuralenok, I., & 
Novikov, B. (2022, June). Substream management in 
distributed streaming dataflows. In Proceedings of the 16th 
ACM International Conference on Distributed and Event-
Based Systems (pp. 55-66).



Tracker: implementation

• Each process sends to the tracking 
agent reports about every data element


• Each report is labeled by a random 
number X that appears twice: on send 
and on receive


• XOR operation for all numbers received 
from such chain turns into 0


• Tracking agent groups the reports by the 
predicates and sends termination events


• We call this approach a trAcker 
framework



Tracker: properties

• Traffic complexity is linear from 
the nodes number - O(K||P||)


• XOR is a commutative operation, 
so we can do pre-aggregation on 
nodes


• Cyclic graphs are supported


• It is pretty easy to design 
distributed implementation of the 
tracking agent



Tracker: overhead on a stream processing engine



Tracker: end-to-end experiments



Part 2: fault tolerance and consistency problems

• Computational nodes may fail


• Users should NOT observe 
failures

https://severalnines.com/database-blog/clustered-database-node-failure-and-its-impact-high-availability



State recovery problem

• Elements processing order can be 
non-deterministic


• Operations can be non-
commutative


• Our goal is to ensure that user does 
not observe failures



Delivery guarantees

• At-most-once


• At-least-once 

• Exactly-once



Delivery guarantees are actually about consistency

• Suppose that we have a model recovery mechanism that ensures recovery of 
operations states all in-flight exactly as they were before the failure


• Let B be a set of output elements released by a system with the model 
recovery mechanism


• At most once guarantees that output consists of a subset of B


• At least once guarantees that output consists of a superset of B


• Exactly once guarantees that output consists of exactly B



Two recovery models

• Model 1: internal network channels 
are controlled


• Model 2: input and output channels 
only are controlled



Model 1 by MillWheel example: state saving process

• Each element has a unique ID


• Node filters out an element if it 
has been already processed


• In a single transaction system 
saves: input element ID, new 
state (or diff), output elements


• Node sends ACK for the input 
element to the previous node
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Akidau, T., Balikov, A., Bekiroğlu, K., Chernyak, S., Haberman, J., Lax, 
R., ... & Whittle, S. (2013). Millwheel: Fault-tolerant stream processing at 
internet scale. Proceedings of the VLDB Endowment, 6(11), 1033-1044.



Model 1 by MillWheel example: state recovery

op1 op2

out

3

out

4

out

2
out

state
1

• Nodes re-send all output 
elements without ACKs


• If failed node has processed an 
element but did not send ACK, 
then repeated input will be 
filtered out by the deduplicator



Model 1 properties

• Recovery does not require stop-the-world


• Overhead is spreaded among the operations: 
there is no overhead on stateless operations


• There is a need for a very efficient 
transactional storage for the state



Model 2 by Flink example: state saving process

Carbone P. et al. Lightweight asynchronous 
snapshots for distributed dataflows //arXiv preprint 
arXiv:1506.08603. – 2015.

• The main idea is to divide stream into epochs and 
create a snapshot for each epoch


• Periodically special elements called “barriers” are 
injected into a stream


• When a barrier arrives to a node, the corresponding 
input network channel is blocked


• When barriers arrive from all input channels, node 
saves its state snapshot (a local snapshot) to an 
external storage


• When all barriers arrive to data sinks, the set of all 
local snapshots is labeled as a global snapshot

https://nightlies.apache.org/flink/flink-docs-release-1.14/docs/concepts/stateful-stream-processing/



Model 2 by Flink example: state saving process phase 1

https://flink.apache.org/features/2018/03/01/end-to-end-
exactly-once-apache-flink.html



Model 2 by Flink example: state saving process phase 2

https://flink.apache.org/features/2018/03/01/end-to-end-
exactly-once-apache-flink.html



Barrier alignment

Carbone P. et al. State management in Apache Flink®: consistent stateful distributed stream 
processing //Proceedings of the VLDB Endowment. – 2017. – Т. 10. – №. 12. – С. 1718-1729.



Model 2 by Flink example: state recovery

• Nodes load the last saved state


• Some amount of input elements 
are reprocessed 



Model 2 properties

• Recovery process requires stop-the-world


• It is supposed that data source can re-send 
some input elements


• Latency directly depends on the snapshotting 
period for exactly-once


• At-least-once is efficient (but it has anomalies)



Model 2 properties: latency for exactly-once



Model 2 properties: at-least-once anomaly

• Output elements do not wait for 
commit in at-least-once 
guarantee


• If graph has a non-commutative 
operation, output elements can 
be inconsistent



Model 2 modification: deterministic processing

• At-least-once anomaly is caused by a 
non-deterministic order of elements 
processing


• If we could ensure deterministic 
processing, there will be no need to 
wait for commit in exactly-once


• How can we make processing 
deterministic?



How to ensure determinism?

• One way is to log all non-
deterministic actions and to replay 
them (elements order, random 
generators, etc)


• If operations are pure, one can 
buffer input elements and sort them 
when the order is ensured



Optimistic approach to ensure determinism

• Suppose that all operations in graph are 
pure


• Let us define a total order on data 
elements t(x)


• If elements are arrived properly ordered, 
worker processes them as usual


• If an element is out-of-order, worker 
invalidates state and previous output 
elements affected by this element and 
re-computes new state and new output 
elements



Part 3: How to choose guarantee?

• Bank transactions (maybe) require 
exactly-once


• For ML training at-least-once is 
sufficient in many cases


• For ML inference the choice of a 
guarantee highly depends on a 
specific problem



How to choose guarantee? At least once: example 1



How to choose guarantee? At least once: example 2



Conclusion

• It is hard to work with unbounded streams but we can divide them into substreams


• Punctuations is the standard technique for substreams management but it is 
inefficient in case of a large number of nodes or substreams


• Tracker is more suitable for large substreams number but its implementation is more 
complex


• Exactly-once guarantee affects latency if stream processing system applies global 
checkpointing model (e.g., Flink)


• Exactly-once = at-least-once + deduplication, if a system is deterministic 


• There are multiple ways to ensure determinism but they can affect throughput


